Rendering Worlds with Two Triangles

with raytracing on the GPU
in 4096 bytes

Inigo Quilez — ig/rgba

August 22 at NVSCENE 08

rgbn demogroup

A bit of context

e Amazing progression in raw GPU power.
e Shaders 3 and 4 flexible enough for

e Experimenting with new techniques.

e Revival of some old-school effects (at a higher quality than ever).
e Unexpected benefits:

e Easy to set up and very compact code.

e 4k demo coders have jumped into it.

rgbn demogroup

NVScene

A bit of context

e The idea: draw two triangles that cover the entire screen area, and invoke
a pixel shader that will create an animated or static image.

>

pixel shader

» Make the complete demo self-contained in no more 4096 bytes (that
includes the “engine”, music, shaders, animations, textures and everything).

rgbn demogroup

A bit of context

e How much is a kilobyte ?

Tw
I

POIUUPILIET | 6

151 POIUIP]LI

v
k3
:'.

{+¥]

p—

=

=

n

=¥}
| %

This is the size of a 64 megabytes demo or V/deo

L

This is the size of a 4 kbytes production

rgbn demogroup

A bit of context

e Probably not a fair comparison (we cannot blame demo coders for being lazy
compared to intro coders).

e The “visual_beauty” is not a linear function of the size in kilobytes.

|

1k 4k 100 k 10 m

e Speculation: With current technology, the optimal “vibes per kilobyte” (aka
result/effort ratio, or “wow factor”) is arround 100 kb productions.

rgbn demogroup

NVScene

Index

e Old-school effects are back

e Rendering with distance fields

rgbn demogroup

Index

e Rendering with distance fields

Old-school effects are back

e Filling the screen with a shader, and producing an image or animation from
it, only works for algorithms and effects that follow this pattern:

for (each pixel p)

{
outputColor = doSomething(p);

}

e This doesn't naturally extend to effects that need to do operations accross
pixels (gather and scatter operations). Multipass techniques can be used, but

e it might actually be slower than doing it on the CPU
e it's not elegant

e it's not very compact for 4k demos

rgbn demogroup

NVScene

Old-school effects are back

e Julia and Mandelbrot sets (the “hello world” of gfx programming)

rgbn demogroup

e Plane deformations

Oldschool software version

for(int 1=0; i<numPixel; 1i++)

{
const uintl6 offset = magicLUT [i] + time;
buffer[i] = texture[offset & Oxffff];

}

Pixel shader version

void main(void) //for(each pixel p)
{
vec2 offset = magicFormula (p, time);

gl FragColor = texture2D (texture, offset);

Old-school effects are back

e Others?
e Rasterizers!
e Vertex transformation
e Triangle rasterization
» Not perspective corrected
e Metaballs
e Plasmas

e Raytracing

rgbn demogroup

Old-school effects are back

e Whitted raytracing of simple scenes/primitives
e A classic in demoscene

o With fake analytic Ambient Occlusion

I
Chocolux, by Auld, 2007 [1 kbyte demo] Kinderpainter, by rgba, at BON 2006 [4k kbytes demo]

rgbn demogroup

NVScene

Old-school effects are back

#include <windows.h>
PIXELFORMATDESCRIPTOR pfd={0,1,PFD SUPPORT_OPENGL | PFD DOUBLEBUFFER, 32, 0, 0, O,

#include <GL/gl.h> o, o, 0, 0, 0, 0, O, O, 0, O, 32, O, 0, 0,70, O, O, OF;

#include <GL/glext.h> DEVMODE dmScreenSettings={ 0,0,0,sizeof (DEVMODE),0,DM PELSWIDTH|DM PELSHEIGHT,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,768,0,0,0,0,0,0,0,0,0,0}; -

char *vsh="\

varying vec3 s[4];\ void WinMainCRTStartup ()

void main () {\ {

gl Position=gl Vertex;\ ChangeDisplaySettings (&dmScreenSettings, CDS_ FULLSCREEN) ;

s[0]=vec3(0);\ HDC hDC = GetDC (CreateWindow ("edit",0,WS POPUP | WS _VISIBLE | WS _MAXIMIZE, O,

0, 0, 0, 0, 0, 0, 0))s
SetPixelFormat (hDC, ChoosePixelFormat (hDC, &pfd) , &pfd);
wglMakeCurrent (hDC, wglCreateContext (hDC)) ;

s[3]=vec3(sin(abs (gl Vertex.x*.0001)),\
cos (abs (gl _Vertex.x*.0001)),0);\
s[1]1=s[3].zxy;\

s[2]=s[3].2zx;}"; ShowCursor (0) ;
GLuint p = ((PFNGLCREATEPROGRAMPROC)wglGetProcAddress ("glCreateProgram")) ();
char *fsh="\ GLuint s = ((PFNGLCREATESHADERPROC) (
varying vec3 s[4];\ wglGetProcAddress ("glCreateShader"))) (GL VERTEX SHADER);
void main () {\ ((PENGLSHADERSOURCEPROC) wglGetProcAddress ("glShaderSource")) (s, 1, &vsh,0);
float t,b,c,h=0;\ ((PENGLCOMPILESHADERPROC) wglGetProcAddress ("glCompileShader")) (s);
vec3 m,n,p=vec3(.2),d=normalize (.001*gl FragCoord.rgb-p);\ ((PFNGLATTACHSHADERPROC) wglGetProcAddress ("glAttachShader")) (p,s);
for (int i=0;1i<4;i++) {\ s = ((PFNGLCREATESHADERPROC)
£=2;\ wglGetProcAddress ("glCreateShader")) (GL_FRAGMENT SHADER) ;
for(int i=0;i<4;i++) {\ PFNGLSHADERSOURCEPROC) wglGetProcAddress ("glShaderSource")) (s,1, &fsh,0);
b=dot (d,n=s[1]-p) i \ PFNGLCOMPILESHADERPROC) wglGetProcAddress ("glCompileShader™)) (s) ;

if (b-c<t) if (¢>0) {m=s[i];t=b-c;}\ PFNGLLINKPROGRAMPROC) wglGetProcAddress ("glLinkProgram")) (p) ;
A PEFNGLUSEPROGRAMPROC)wglGetProcAddress ("glUseProgram")) (p) ;
p+=t*d;\ loop:
d=reflect (d,n=normalize (p-m)) ;\ int t=GetTickCount () ;

glRecti(t,t,-t,-t);

SwapBuffers (hDC) ;

if (GetAsyncKeyState (VK ESCAPE)) ExitProcess(0);

((
((
c=b*b+.2-dot (n,n) ; \ ((PFNGLATTACHSHADERPROC) wglGetProcAddress ("glAttachShader")) (p,s) ;
((
((

h+=pow (n.x*n.x,44.)+n.x*n.x*.2;\
N\
gl FragColor=vec4 (h,h*h,h*h*h*h,h);}";
goto loop;
Source code of chocolux, by Auld (link with Crinkler) }

rgbn demogroup

Old-school effects are back

e Pathtracing of simple scenes/primitives

Off the shelf, by Loonies, at Breakpoint 2008 [4k kbytes image]

PhotonRace, by Archee, at Buenzli 2008 [4k kbytes image]

rgbn demogroup

Old-school effects are back

e GPU raytracing beyond spheres and planes (I mean polygons)

Images reproduced with permision of Vircontext (www.vrcontext.com)

Old-school effects are back

e GPU raytracing beyond spheres and planes (I mean polygons)

e A very hot research topic today (because raytracing is the
future...)

e Difficult to beat CPU raytracers
o kd-tree/bih/bvh traversal is quite incoherent
e They all need a stack (unavailable today on shaders).

e For massive models, streaming to video memory is needed.
That makes it more complex.

e In any case, demosceners have not been interested on real
raytracing so far; even less in the 4k categories.

rgbn demogroup

Old-school effects are back

e Raymarching

e Kind of raytracing for all those objects that don't have an analytic
intersection function.

rgbn demogroup

Old-school effects are back

e Raymarching -- what?
e Heightmaps
e VVolume textures
e Procedural isosurfacss

e Analytic surfaces

Analytic surface

e sy

3D texture volume raymarching (rgba) Procedural isosurface

rgbn demogroup

NVScene

Old-school effects are back

e Raymarching -- how?
e Constant steps

e Root finders (bisection, Newton-Raphson...)

e Distance fields

%A

Failty, by Loonies, 2006, a 4 kbytes dem Tracie, by TBC, 2007, a 1 kbytes demo Kindernoiser, by rgba, 2007, a 4 kbytes demo

rgbn demogroup

Index

e Old school effects are back

Rendering with distance fields

T

&
¥ -

isesix, by rgba, at EuskalEncounter 2008 [4k kbytes image

rgbn demogroup

Rendering with distance fields

e Similarly previous works

e “Ray tracing deterministic 3-D fractals” published at Siggraph
1989 by D.J.Sandin and others.

» “Per-pixel displacement mapping with distance functions”,
appeared in GPU Gems 2 (2005) by W.Donnelly.

e The trick is to be able to compute or estimate (a lower bound of)
the distance to the closest surface at any point in space.

e This allows for marching in large steps along the ray.

rgbn demogroup

Distance-aided ray marching

rgbn demogroup

Distance-aided ray marching

rghn demogroup

Distance-aided ray marching

rgbn demogroup

Distance-aided ray marching

rgbn demogroup

Distance-aided ray marching

rgbn demogroup

Distance-aided ray marching

rgbn demogroup

Distance-aided ray marching

rgbn demogroup

Rendering with distance fields

Pros
e Much faster than constant-size stepping.
e Much easier to control than root finders (bisection, Newton...)

e Room for optimization, like using bigger steps when we are further from
the ray origin

e Error in world coordinates decreases as 1/d

e So stepping proportionally to d results in constant screen space error.
Cons
 Slow on the boundaries of the objects (hopefully not that many pixels).

e Can control it by imposing a minimun step size.

rgbn demogroup

Rendering with distance fields

e Slisesix needs 50 million evaluations of the very expensive distance
function for a 1280x720 pixel image.

e 60% of the evaluations are for primary rays (av. 17 steps per ray).
* 40% of the evaluations are for lighting and shading.
» Note the very expensive

marching on the object
edges.

: .
-4 e
f -
| (

Number of ra, ymch/ng steps for primary rays encoded as colors

Rendering with distance fields

e We need a distance field:
e Analytic computation (“Ray tracing deterministic 3-D fractals”)
e Precomputed (static scene) LUT
e 3D texture (“Per pixel displacement mapping with distance functions”)
e Octree / KdTree
e What if we do it 100% procedurally? (“Slisesix”)

rgbn demogroup

Rendering with distance fields

e Procedural distance fields

e Don't define the surface first and then compute the distance field, but
directly code a distance field and a surface will emerge.

o Tweak the distance field directly until you get what you want/can.
e Helpful techniques that can be used:

e Arbitrary combination and instantiation

e Inifinite repetition

e Deforming space: twisting, bending, deforming

e Cheap detail surfaces

e Blend shapes

rgbn demogroup

Rendering with distance fields :: Combination

e Combination of (instanced) distance fields can be done by taking
the min of the distance fields involved.

e Instance transformation can be done by inverse transforming the
domain (the input to the distance function).

float combinedDistanceField(vec3 p)
{
float distl = distanceField A(Mlinv*p)
float dist2 = distanceField A(M2inv*p)
float dist3 = distanceField B(M3inv*p);
) ;

return min(distl, min(dist2, dist3)

rgbn demogroup

Rendering with distance fields :: Domain repetition

e dist = fourMagicColumns(p.x, p.y, p.z);

rgbn demogroup

Rendering with distance fields :: Domain repetition

e dist = fourMagicColumns(mod(p.x,1), p.y, mod(p.z,1));

rgbn demogroup

Rendering with distance fields :: Domain distortion

float dist = distanceToColumn (p) ;

rgbn demogroup

Rendering with distance fields :: Domain distortion

float twistedColumn(vec3 p)

{
vec3 g = rotateY(p, p.v*1.7);

return distanceToColumn (q) ;

rgbn demogroup

Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xVy);
for(int 1=0; i<6; i++)
{
vec3 g = rotateY(p, TWOPI*i/6.0);

distance = min(distance, distanceToTheXAxis(q));

rgbn demogroup

Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xVy);

for(int 1=0; i<6; i++)

{
vec3 g = rotateY(p, TWOPI*i/6.0);
g.y t= 0.6*rr*exp2(-10.0*rr) ;

distance = min(distance, distanceToTheXAxis(q));

rgbn demogroup

Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xVy);

for(int 1=0; i<6; i++)

{
vec3 g = rotateY(p, TWOPI*i/6.0 + 0.4*rr*noise2f (vec3(4*rr,6.3*1)));
g.y t= 0.6*rr*exp2(-10.0*rr) ;

distance = min(distance, distanceToTheXAxis(q));

rgbn demogroup

Rendering with distance fields :: Blending fields

float distanceToMonster (vec3 p)
{
float distl
float dist2
float bfact = smoothstep(length(p), 0, 1);
return mix(distl, dist2, bfact);

distanceToBall (p) ;

distanceToTentacles (p) ;

rgbn demogroup

Rendering with distance fields :: Adding details

dist = distanceToColmuns (p):;

rgbn demogroup

Rendering with distance fields :: Adding details

dist = distanceToColmuns(p) + 0.000001*clamp (fbm(p), 0, 1);

rgbn demogroup

NVScene

Rendering with distance fields :: Lighting

e Lighting
e Normals
e Bump mapping
e Soft shadows

e Ambient Occlusion

rgbn demogroup

Rendering with distance fields :: Lighting

e Normals computed by central differences on the distance field at the
shading point (gradient approximation).

e Bump map computed by adding the gradient of a fractal sum of Perlin noise
functions to the surface normal.

e n = normalize(grad(distance, p)) + bump*grad(fbm, p)));
e bump is small and depend on the material.
e grad(func, p) = normalize(

func(p+{eps,0,0}) - func(p-{eps,0,0}),

func(p+{0,eps,0}) - func(p-{0,eps,0}),

func(p+{0,0,eps}) - func(p-{0,0,eps}));

rgbn demogroup

Rendering with distance fields :: Ambient Occlusion

e Fake and fast Ambient Occlusion.

e VERY CHEAP, even cheaper than primary rays! Only 5 distance evaluations
instead of casting thousand of rays/evaluations.

rgbn demogroup

Rendering with distance fields :: Ambient Occlusion

e In a reqgular raytracer, primary rays/AO cost is 1:2000. Here, it's 3:1 (that's
almost four orders of magnitude speedup!).

o It's NOT the screen space trick (SSAO), but 3D.

e The basic technique was invented by Alex Evans, aka Statix (“Fast
Approximation for Global Illumnation on Dynamic Scenes”, 2006). Greets to him!

« The idea: let p be the point to shade. Sample the distance field at a few (5)
points around p and compare the result to the actual distance to p. That
gives surface proximity information that can easily be interpreted as an
(ambient) occlusion factor.

rgbn demogroup

Rendering with distance fields :: Ambient Occlusion

rgbn demogroup

i

rgbn demogroup

Rendering with distance fields :: Ambient Occlusion

rgbn demogroup

Rendering with distance fields :: Ambient Occlusion

rgbn demogroup

Rendering with distance fields :: Ambient Occlusion

>, 1
=1-k-» —(pink, — yellow,
ao ;2{ (pink, — yellow,)
aozl—k-Z%(f-ﬁ—dﬁsﬁfe!a(ijn-f-A))
=

» The exponential decay is there so further away surfaces occlude less than
near by ones.

rgbn demogroup

Rendering with distance fields :: Ambient Occlusion

e Works in realtime too, provided you can compute distances to surfaces.

Rendering with distance fields :: Soft Shadows

e Fake and fast soft shadows.
e Only 6 distance evaluations used instead of casting hundrends of rays.
e Pure geometry-based, not bluring.

e Recipe: take n points on the line from the surface to the light and evaluate
the distance to the closest geometry. Find a magic formula to blend the n
distances to obtain a shadow factor.

Z

rgbn demogroup

Rendering with distance fields

e On a GeForce 8800 GTX, it renders around 20 times faster than on a dual
core CPU. It will very soon be realtime.

rgbn demogroup

NVScene

Rendering with distance fields

e Related info:

® "Making graphics in 4 kilobytes™:

e “"Advanced perlin noise”:

rgbn demogroup

