Rendering Worlds with Two Triangles

with raytracing on the GPU
in 4096 bytes

Inigo Quilez — ig/rgba

August 22 at NVSCENE 08
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A bit of context

e Amazing progression in raw GPU power.
e Shaders 3 and 4 flexible enough for

e Experimenting with new techniques.

e Revival of some old-school effects (at a higher quality than ever).
e Unexpected benefits:

e Easy to set up and very compact code.

e 4k demo coders have jumped into it.
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NVScene

A bit of context

e The idea: draw two triangles that cover the entire screen area, and invoke
a pixel shader that will create an animated or static image.

>

pixel shader

» Make the complete demo self-contained in no more 4096 bytes (that
includes the “engine”, music, shaders, animations, textures and everything).
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A bit of context

e How much is a kilobyte ?
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This is the size of a 64 megabytes demo or V/deo
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This is the size of a 4 kbytes production
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A bit of context

e Probably not a fair comparison (we cannot blame demo coders for being lazy
compared to intro coders).

e The “visual_beauty” is not a linear function of the size in kilobytes.

|

1k 4k 100 k 10 m

e Speculation: With current technology, the optimal “vibes per kilobyte” (aka
result/effort ratio, or “wow factor”) is arround 100 kb productions.
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NVScene

Index

e Old-school effects are back

e Rendering with distance fields
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Index

e Rendering with distance fields



Old-school effects are back

e Filling the screen with a shader, and producing an image or animation from
it, only works for algorithms and effects that follow this pattern:

for ( each pixel p )

{
outputColor = doSomething( p );

}

e This doesn't naturally extend to effects that need to do operations accross
pixels (gather and scatter operations). Multipass techniques can be used, but

e it might actually be slower than doing it on the CPU
e it's not elegant

e it's not very compact for 4k demos
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NVScene

Old-school effects are back

e Julia and Mandelbrot sets (the “hello world” of gfx programming)
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e Plane deformations

Oldschool software version

for( int 1=0; i<numPixel; 1i++ )

{
const uintl6 offset = magicLUT [i] + time;
buffer[i] = texture[ offset & Oxffff ];

}

Pixel shader version

void main( void ) //for( each pixel p )
{
vec2 offset = magicFormula (p, time);

gl FragColor = texture2D (texture, offset);




Old-school effects are back

e Others?
e Rasterizers!
e Vertex transformation
e Triangle rasterization
» Not perspective corrected
e Metaballs
e Plasmas

e Raytracing
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Old-school effects are back

e Whitted raytracing of simple scenes/primitives
e A classic in demoscene

o With fake analytic Ambient Occlusion

I
Chocolux, by Auld, 2007 [1 kbyte demo] Kinderpainter, by rgba, at BON 2006 [4k kbytes demo]
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NVScene

Old-school effects are back

#include <windows.h>
PIXELFORMATDESCRIPTOR pfd={0,1,PFD SUPPORT_OPENGL | PFD DOUBLEBUFFER, 32, 0, 0, O,

#include <GL/gl.h> o, o, 0, 0, 0, 0, O, O, 0, O, 32, O, 0, 0,70, O, O, OF;

#include <GL/glext.h> DEVMODE dmScreenSettings={ 0,0,0,sizeof (DEVMODE),0,DM PELSWIDTH|DM PELSHEIGHT,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,768,0,0,0,0,0,0,0,0,0,0}; -

char *vsh="\

varying vec3 s[4];\ void WinMainCRTStartup ()

void main () {\ {

gl Position=gl Vertex;\ ChangeDisplaySettings (&dmScreenSettings, CDS_ FULLSCREEN) ;

s[0]=vec3(0);\ HDC hDC = GetDC (CreateWindow ("edit",0,WS POPUP | WS _VISIBLE | WS _MAXIMIZE, O,

0, 0, 0, 0, 0, 0, 0))s
SetPixelFormat (hDC, ChoosePixelFormat (hDC, &pfd) , &pfd);
wglMakeCurrent (hDC, wglCreateContext (hDC)) ;

s[3]=vec3(sin(abs (gl Vertex.x*.0001)),\
cos (abs (gl _Vertex.x*.0001)),0);\
s[1]1=s[3].zxy;\

s[2]=s[3].2zx;}"; ShowCursor (0) ;
GLuint p = ((PFNGLCREATEPROGRAMPROC)wglGetProcAddress ("glCreateProgram")) ();
char *fsh="\ GLuint s = ((PFNGLCREATESHADERPROC) (
varying vec3 s[4];\ wglGetProcAddress ("glCreateShader"))) (GL VERTEX SHADER);
void main () {\ ( (PENGLSHADERSOURCEPROC) wglGetProcAddress ("glShaderSource")) (s, 1, &vsh,0);
float t,b,c,h=0;\ ( (PENGLCOMPILESHADERPROC) wglGetProcAddress ("glCompileShader")) (s);
vec3 m,n,p=vec3(.2),d=normalize (.001*gl FragCoord.rgb-p);\ ( (PFNGLATTACHSHADERPROC) wglGetProcAddress ("glAttachShader")) (p,s);
for (int i=0;1i<4;i++) {\ s = ((PFNGLCREATESHADERPROC)
£=2;\ wglGetProcAddress ("glCreateShader")) (GL_FRAGMENT SHADER) ;
for(int i=0;i<4;i++) {\ PFNGLSHADERSOURCEPROC) wglGetProcAddress ("glShaderSource")) (s,1, &fsh,0);
b=dot (d,n=s[1]-p) i \ PFNGLCOMPILESHADERPROC) wglGetProcAddress ("glCompileShader™)) (s) ;

if (b-c<t) if (¢>0) {m=s[i];t=b-c;}\ PFNGLLINKPROGRAMPROC) wglGetProcAddress ("glLinkProgram")) (p) ;
A PEFNGLUSEPROGRAMPROC)wglGetProcAddress ("glUseProgram")) (p) ;
p+=t*d;\ loop:
d=reflect (d,n=normalize (p-m)) ;\ int t=GetTickCount () ;

glRecti(t,t,-t,-t);

SwapBuffers (hDC) ;

if (GetAsyncKeyState (VK ESCAPE)) ExitProcess(0);

((
((
c=b*b+.2-dot (n,n) ; \ ( (PFNGLATTACHSHADERPROC) wglGetProcAddress ("glAttachShader")) (p,s) ;
((
((

h+=pow (n.x*n.x,44.)+n.x*n.x*.2;\
N\
gl FragColor=vec4 (h,h*h,h*h*h*h,h);}";
goto loop;
Source code of chocolux, by Auld (link with Crinkler) }
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Old-school effects are back

e Pathtracing of simple scenes/primitives

Off the shelf, by Loonies, at Breakpoint 2008 [4k kbytes image]

PhotonRace, by Archee, at Buenzli 2008 [4k kbytes image]
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Old-school effects are back

e GPU raytracing beyond spheres and planes (I mean polygons)

Images reproduced with permision of Vircontext (www.vrcontext.com)




Old-school effects are back

e GPU raytracing beyond spheres and planes (I mean polygons)

e A very hot research topic today (because raytracing is the
future...)

e Difficult to beat CPU raytracers
o kd-tree/bih/bvh traversal is quite incoherent
e They all need a stack (unavailable today on shaders).

e For massive models, streaming to video memory is needed.
That makes it more complex.

e In any case, demosceners have not been interested on real
raytracing so far; even less in the 4k categories.
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Old-school effects are back

e Raymarching

e Kind of raytracing for all those objects that don't have an analytic
intersection function.
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Old-school effects are back

e Raymarching -- what?
e Heightmaps
e VVolume textures
e Procedural isosurfacss

e Analytic surfaces

Analytic surface

e sy

3D texture volume raymarching (rgba) Procedural isosurface
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NVScene

Old-school effects are back

e Raymarching -- how?
e Constant steps

e Root finders (bisection, Newton-Raphson...)

e Distance fields

%A

Failty, by Loonies, 2006, a 4 kbytes dem Tracie, by TBC, 2007, a 1 kbytes demo Kindernoiser, by rgba, 2007, a 4 kbytes demo
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Index

e Old school effects are back



Rendering with distance fields
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isesix, by rgba, at EuskalEncounter 2008 [4k kbytes image
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Rendering with distance fields

e Similarly previous works

e “Ray tracing deterministic 3-D fractals” published at Siggraph
1989 by D.J.Sandin and others.

» “Per-pixel displacement mapping with distance functions”,
appeared in GPU Gems 2 (2005) by W.Donnelly.

e The trick is to be able to compute or estimate (a lower bound of)
the distance to the closest surface at any point in space.

e This allows for marching in large steps along the ray.
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Distance-aided ray marching
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Distance-aided ray marching
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Distance-aided ray marching
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Distance-aided ray marching
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Distance-aided ray marching
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Distance-aided ray marching
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Distance-aided ray marching
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Rendering with distance fields

Pros
e Much faster than constant-size stepping.
e Much easier to control than root finders (bisection, Newton... )

e Room for optimization, like using bigger steps when we are further from
the ray origin

e Error in world coordinates decreases as 1/d

e So stepping proportionally to d results in constant screen space error.
Cons
 Slow on the boundaries of the objects (hopefully not that many pixels).

e Can control it by imposing a minimun step size.
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Rendering with distance fields

e Slisesix needs 50 million evaluations of the very expensive distance
function for a 1280x720 pixel image.

e 60% of the evaluations are for primary rays (av. 17 steps per ray).
* 40% of the evaluations are for lighting and shading.
» Note the very expensive

marching on the object
edges.

: .
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Number of ra, ymch/ng steps for primary rays encoded as colors



Rendering with distance fields

e We need a distance field:
e Analytic computation (“Ray tracing deterministic 3-D fractals”)
e Precomputed (static scene) LUT
e 3D texture (“Per pixel displacement mapping with distance functions”)
e Octree / KdTree
e What if we do it 100% procedurally? (“Slisesix”)
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Rendering with distance fields

e Procedural distance fields

e Don't define the surface first and then compute the distance field, but
directly code a distance field and a surface will emerge.

o Tweak the distance field directly until you get what you want/can.
e Helpful techniques that can be used:

e Arbitrary combination and instantiation

e Inifinite repetition

e Deforming space: twisting, bending, deforming

e Cheap detail surfaces

e Blend shapes
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Rendering with distance fields :: Combination

e Combination of (instanced) distance fields can be done by taking
the min of the distance fields involved.

e Instance transformation can be done by inverse transforming the
domain (the input to the distance function).

float combinedDistanceField( vec3 p )
{
float distl = distanceField A( Mlinv*p )
float dist2 = distanceField A( M2inv*p )
float dist3 = distanceField B( M3inv*p );
) ;

return min( distl, min( dist2, dist3 )

rgbn demogroup



Rendering with distance fields :: Domain repetition

e dist = fourMagicColumns( p.x, p.y, p.z );
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Rendering with distance fields :: Domain repetition

e dist = fourMagicColumns( mod(p.x,1), p.y, mod(p.z,1) );
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Rendering with distance fields :: Domain distortion

float dist = distanceToColumn (p) ;
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Rendering with distance fields :: Domain distortion

float twistedColumn( vec3 p )

{
vec3 g = rotateY(p, p.v*1.7);

return distanceToColumn (q) ;
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Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xVy);
for( int 1=0; i<6; i++ )
{
vec3 g = rotateY( p, TWOPI*i/6.0 );

distance = min( distance, distanceToTheXAxis(q) );
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Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xVy);

for( int 1=0; i<6; i++ )

{
vec3 g = rotateY( p, TWOPI*i/6.0 );
g.y t= 0.6*rr*exp2(-10.0*rr) ;

distance = min( distance, distanceToTheXAxis(q) );
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Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xVy);

for( int 1=0; i<6; i++ )

{
vec3 g = rotateY( p, TWOPI*i/6.0 + 0.4*rr*noise2f (vec3(4*rr,6.3*1)) );
g.y t= 0.6*rr*exp2(-10.0*rr) ;

distance = min( distance, distanceToTheXAxis(q) );
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Rendering with distance fields :: Blending fields

float distanceToMonster ( vec3 p )
{
float distl
float dist2
float bfact = smoothstep( length(p), 0, 1 );
return mix( distl, dist2, bfact );

distanceToBall (p) ;

distanceToTentacles (p) ;
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Rendering with distance fields :: Adding details

dist = distanceToColmuns (p):;
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Rendering with distance fields :: Adding details

dist = distanceToColmuns(p) + 0.000001*clamp (fbm(p), 0, 1);
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NVScene

Rendering with distance fields :: Lighting

e Lighting
e Normals
e Bump mapping
e Soft shadows

e Ambient Occlusion
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Rendering with distance fields :: Lighting

e Normals computed by central differences on the distance field at the
shading point (gradient approximation).

e Bump map computed by adding the gradient of a fractal sum of Perlin noise
functions to the surface normal.

e n = normalize( grad( distance, p) ) + bump*grad( fbm, p) ) );
e bump is small and depend on the material.
e grad( func, p ) = normalize(

func(p+{eps,0,0}) - func(p-{eps,0,0}),

func(p+{0,eps,0}) - func(p-{0,eps,0}),

func(p+{0,0,eps}) - func(p-{0,0,eps}) );
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Rendering with distance fields :: Ambient Occlusion

e Fake and fast Ambient Occlusion.

e VERY CHEAP, even cheaper than primary rays! Only 5 distance evaluations
instead of casting thousand of rays/evaluations.
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Rendering with distance fields :: Ambient Occlusion

e In a reqgular raytracer, primary rays/AO cost is 1:2000. Here, it's 3:1 (that's
almost four orders of magnitude speedup!).

o It's NOT the screen space trick (SSAO), but 3D.

e The basic technique was invented by Alex Evans, aka Statix (“Fast
Approximation for Global Illumnation on Dynamic Scenes”, 2006). Greets to him!

« The idea: let p be the point to shade. Sample the distance field at a few (5)
points around p and compare the result to the actual distance to p. That
gives surface proximity information that can easily be interpreted as an
(ambient) occlusion factor.
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Rendering with distance fields :: Ambient Occlusion
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Rendering with distance fields :: Ambient Occlusion
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Rendering with distance fields :: Ambient Occlusion
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Rendering with distance fields :: Ambient Occlusion

>, 1
=1-k-» —(pink, — yellow,
ao ;2{ ( pink, — yellow,)
aozl—k-Z%(f-ﬁ—dﬁsﬁfe!a(ijn-f-A))
=

» The exponential decay is there so further away surfaces occlude less than
near by ones.
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Rendering with distance fields :: Ambient Occlusion

e Works in realtime too, provided you can compute distances to surfaces.




Rendering with distance fields :: Soft Shadows

e Fake and fast soft shadows.
e Only 6 distance evaluations used instead of casting hundrends of rays.
e Pure geometry-based, not bluring.

e Recipe: take n points on the line from the surface to the light and evaluate
the distance to the closest geometry. Find a magic formula to blend the n
distances to obtain a shadow factor.

Z
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Rendering with distance fields

e On a GeForce 8800 GTX, it renders around 20 times faster than on a dual
core CPU. It will very soon be realtime.
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NVScene

Rendering with distance fields

e Related info:

® "Making graphics in 4 kilobytes™:

e “"Advanced perlin noise”:
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