
Rendering Worlds with Two Triangles

with raytracing on the GPU

in 4096 bytes

Iñigo Quilez – iq/rgba

August 22 at NVSCENE 08

A bit of context

• Amazing progression in raw GPU power.

• Shaders 3 and 4 flexible enough for

• Experimenting with new techniques.

• Revival of some old-school effects (at a higher quality than ever).

• Unexpected benefits:

• Easy to set up and very compact code.

• 4k demo coders have jumped into it.

A bit of context

• The idea: draw two triangles that cover the entire screen area, and invoke
a pixel shader that will create an animated or static image.

pixel shader

• Make the complete demo self-contained in no more 4096 bytes (that
includes the “engine”, music, shaders, animations, textures and everything).

A bit of context

• How much is a kilobyte ?

This is the size of a 4 kbytes production

This is the size of a 64 megabytes demo or video

A bit of context

• Probably not a fair comparison (we cannot blame demo coders for being lazy
compared to intro coders).

• The “visual_beauty” is not a linear function of the size in kilobytes.

• Speculation: With current technology, the optimal “vibes per kilobyte” (aka
result/effort ratio, or “wow factor”) is arround 100 kb productions.

1k 4k 100 k 10 m

Index

• Old-school effects are back

• Rendering with distance fields

• Old-school effects are back

• Rendering with distance fields

Index

Old-school effects are back

• Filling the screen with a shader, and producing an image or animation from
it, only works for algorithms and effects that follow this pattern:

for(each pixel p)

{

outputColor = doSomething(p);

}

• This doesn’t naturally extend to effects that need to do operations accross
pixels (gather and scatter operations). Multipass techniques can be used, but

• it might actually be slower than doing it on the CPU

• it’s not elegant

• it’s not very compact for 4k demos

Old-school effects are back

• Julia and Mandelbrot sets (the “hello world” of gfx programming)

Old-school effects are back

• Plane deformations

Oldschool software version
for(int i=0; i<numPixel; i++)

{

const uint16 offset = magicLUT [i] + time;

buffer[i] = texture[offset & 0xffff];

}

Pixel shader version
void main(void) //for(each pixel p)

{

vec2 offset = magicFormula(p, time);

gl_FragColor = texture2D(texture, offset);

}

Old-school effects are back

• Others?

• Rasterizers!

• Vertex transformation

• Triangle rasterization

• Not perspective corrected

• Metaballs

• Plasmas

• Raytracing

Old-school effects are back

• Whitted raytracing of simple scenes/primitives

• A classic in demoscene

• With fake analytic Ambient Occlusion

Chocolux, by Auld, 2007 [1 kbyte demo] Kinderpainter, by rgba, at BCN 2006 [4k kbytes demo]

Old-school effects are back
#include <windows.h>

#include <GL/gl.h>

#include <GL/glext.h>

char *vsh="\

varying vec3 s[4];\

void main(){\

gl_Position=gl_Vertex;\

s[0]=vec3(0);\

s[3]=vec3(sin(abs(gl_Vertex.x*.0001)),\

cos(abs(gl_Vertex.x*.0001)),0);\

s[1]=s[3].zxy;\

s[2]=s[3].zzx;}";

char *fsh="\

varying vec3 s[4];\

void main(){\

float t,b,c,h=0;\

vec3 m,n,p=vec3(.2),d=normalize(.001*gl_FragCoord.rgb-p);\

for(int i=0;i<4;i++){\

t=2;\

for(int i=0;i<4;i++){\

b=dot(d,n=s[i]-p);\

c=b*b+.2-dot(n,n);\

if(b-c<t)if(c>0){m=s[i];t=b-c;}\

}\

p+=t*d;\

d=reflect(d,n=normalize(p-m));\

h+=pow(n.x*n.x,44.)+n.x*n.x*.2;\

}\

gl_FragColor=vec4(h,h*h,h*h*h*h,h);}";

PIXELFORMATDESCRIPTOR pfd={0,1,PFD_SUPPORT_OPENGL|PFD_DOUBLEBUFFER, 32, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0};

DEVMODE dmScreenSettings={ 0,0,0,sizeof(DEVMODE),0,DM_PELSWIDTH|DM_PELSHEIGHT,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,768,0,0,0,0,0,0,0,0,0,0};

void WinMainCRTStartup()

{

ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN);

HDC hDC = GetDC(CreateWindow("edit",0,WS_POPUP | WS_VISIBLE | WS_MAXIMIZE, 0,
0, 0, 0, 0, 0, 0, 0));

SetPixelFormat(hDC, ChoosePixelFormat(hDC, &pfd) , &pfd);

wglMakeCurrent(hDC, wglCreateContext(hDC));

ShowCursor(0);

GLuint p = ((PFNGLCREATEPROGRAMPROC)wglGetProcAddress("glCreateProgram"))();

GLuint s = ((PFNGLCREATESHADERPROC)(

wglGetProcAddress("glCreateShader")))(GL_VERTEX_SHADER);

((PFNGLSHADERSOURCEPROC)wglGetProcAddress("glShaderSource"))(s,1, &vsh,0);

((PFNGLCOMPILESHADERPROC)wglGetProcAddress("glCompileShader"))(s);

((PFNGLATTACHSHADERPROC)wglGetProcAddress("glAttachShader"))(p,s);

s = ((PFNGLCREATESHADERPROC)

wglGetProcAddress("glCreateShader"))(GL_FRAGMENT_SHADER);

((PFNGLSHADERSOURCEPROC)wglGetProcAddress("glShaderSource"))(s,1, &fsh,0);

((PFNGLCOMPILESHADERPROC)wglGetProcAddress("glCompileShader"))(s);

((PFNGLATTACHSHADERPROC)wglGetProcAddress("glAttachShader"))(p,s);

((PFNGLLINKPROGRAMPROC)wglGetProcAddress("glLinkProgram"))(p);

((PFNGLUSEPROGRAMPROC)wglGetProcAddress("glUseProgram"))(p);

loop:

int t=GetTickCount();

glRecti(t,t,-t,-t);

SwapBuffers(hDC);

if (GetAsyncKeyState(VK_ESCAPE)) ExitProcess(0);

goto loop;

}Source code of chocolux, by Auld (link with Crinkler)

Old-school effects are back

• Pathtracing of simple scenes/primitives

Off the shelf, by Loonies, at Breakpoint 2008 [4k kbytes image] PhotonRace, by Archee, at Buenzli 2008 [4k kbytes image]

Old-school effects are back

• GPU raytracing beyond spheres and planes (I mean polygons)

Images reproduced with permision of Vrcontext (www.vrcontext.com)

Old-school effects are back

• GPU raytracing beyond spheres and planes (I mean polygons)

• A very hot research topic today (because raytracing is the
future...)

• Difficult to beat CPU raytracers

• kd-tree/bih/bvh traversal is quite incoherent

• They all need a stack (unavailable today on shaders).

• For massive models, streaming to video memory is needed.
That makes it more complex.

• In any case, demosceners have not been interested on real
raytracing so far; even less in the 4k categories.

Old-school effects are back

• Raymarching

• Kind of raytracing for all those objects that don’t have an analytic
intersection function.

Old-school effects are back

• Raymarching -- what?

• Heightmaps

• Volume textures

• Procedural isosurfacss

• Analytic surfaces

3D texture volume raymarching (rgba) Procedural isosurface
Analytic surface

Heightmap raymarching. Hymalaya, by TBC 2008, 1 kbytes demo

Old-school effects are back

• Raymarching -- how?

• Constant steps

• Root finders (bisection, Newton-Raphson...)

• Distance fields

Failty, by Loonies, 2006, a 4 kbytes demo Tracie, by TBC, 2007, a 1 kbytes demo Kindernoiser, by rgba, 2007, a 4 kbytes demo

• Old school effects are back

• Rendering with distance fields

Index

Rendering with distance fields

Slisesix, by rgba, at EuskalEncounter 2008 [4k kbytes image]

Rendering with distance fields

• Similarly previous works

• “Ray tracing deterministic 3-D fractals” published at Siggraph
1989 by D.J.Sandin and others.

• “Per-pixel displacement mapping with distance functions”,
appeared in GPU Gems 2 (2005) by W.Donnelly.

• The trick is to be able to compute or estimate (a lower bound of)
the distance to the closest surface at any point in space.

• This allows for marching in large steps along the ray.

Distance-aided ray marching

Distance-aided ray marching

Distance-aided ray marching

Distance-aided ray marching

Distance-aided ray marching

Distance-aided ray marching

Distance-aided ray marching

Rendering with distance fields

Pros

• Much faster than constant-size stepping.

• Much easier to control than root finders (bisection, Newton...)

• Room for optimization, like using bigger steps when we are further from
the ray origin

• Error in world coordinates decreases as 1/d

• So stepping proportionally to d results in constant screen space error.

Cons

• Slow on the boundaries of the objects (hopefully not that many pixels).

• Can control it by imposing a minimun step size.

Rendering with distance fields

• Slisesix needs 50 million evaluations of the very expensive distance
function for a 1280x720 pixel image.

• 60% of the evaluations are for primary rays (av. 17 steps per ray).

• 40% of the evaluations are for lighting and shading.

Number of raymarching steps for primary rays encoded as colors

16

1

32

64
• Note the very expensive
marching on the object
edges.

Rendering with distance fields

• We need a distance field:

• Analytic computation (“Ray tracing deterministic 3-D fractals”)

• Precomputed (static scene) LUT

• 3D texture (“Per pixel displacement mapping with distance functions”)

• Octree / KdTree

• What if we do it 100% procedurally? (“Slisesix”)

Rendering with distance fields

• Procedural distance fields

• Don’t define the surface first and then compute the distance field, but
directly code a distance field and a surface will emerge.

• Tweak the distance field directly until you get what you want/can.

• Helpful techniques that can be used:

• Arbitrary combination and instantiation

• Inifinite repetition

• Deforming space: twisting, bending, deforming

• Cheap detail surfaces

• Blend shapes

Rendering with distance fields :: Combination

• Combination of (instanced) distance fields can be done by taking
the min of the distance fields involved.

• Instance transformation can be done by inverse transforming the
domain (the input to the distance function).

float combinedDistanceField(vec3 p)

{

float dist1 = distanceField_A(M1inv*p);

float dist2 = distanceField_A(M2inv*p);

float dist3 = distanceField_B(M3inv*p);

return min(dist1, min(dist2, dist3));

}

Rendering with distance fields :: Domain repetition

• dist = fourMagicColumns(p.x, p.y, p.z);

Rendering with distance fields :: Domain repetition

• dist = fourMagicColumns(mod(p.x,1), p.y, mod(p.z,1));

Rendering with distance fields :: Domain distortion

float dist = distanceToColumn(p);

Rendering with distance fields :: Domain distortion

float twistedColumn(vec3 p)

{

vec3 q = rotateY(p, p.y*1.7);

return distanceToColumn(q);

}

Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xy);

for(int i=0; i<6; i++)

{

vec3 q = rotateY(p, TWOPI*i/6.0);

distance = min(distance, distanceToTheXAxis(q));

}

Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xy);

for(int i=0; i<6; i++)

{

vec3 q = rotateY(p, TWOPI*i/6.0);

q.y += 0.6*rr*exp2(-10.0*rr);

distance = min(distance, distanceToTheXAxis(q));

}

Rendering with distance fields :: Domain distortion

float rr = dot(p.xy,p.xy);

for(int i=0; i<6; i++)

{

vec3 q = rotateY(p, TWOPI*i/6.0 + 0.4*rr*noise2f(vec3(4*rr,6.3*i)));

q.y += 0.6*rr*exp2(-10.0*rr);

distance = min(distance, distanceToTheXAxis(q));

}

Rendering with distance fields :: Blending fields

float distanceToMonster(vec3 p)

{

float dist1 = distanceToBall(p);

float dist2 = distanceToTentacles(p);

float bfact = smoothstep(length(p), 0, 1);

return mix(dist1, dist2, bfact);

}

Rendering with distance fields :: Adding details

dist = distanceToColmuns(p);

Rendering with distance fields :: Adding details

dist = distanceToColmuns(p) + 0.000001*clamp(fbm(p), 0, 1);

Rendering with distance fields :: Lighting

• Lighting

• Normals

• Bump mapping

• Soft shadows

• Ambient Occlusion

Rendering with distance fields :: Lighting

• Normals computed by central differences on the distance field at the
shading point (gradient approximation).

• Bump map computed by adding the gradient of a fractal sum of Perlin noise
functions to the surface normal.

• n = normalize(grad(distance, p)) + bump*grad(fbm, p)));

• bump is small and depend on the material.

• grad(func, p) = normalize(

func(p+{eps,0,0}) - func(p-{eps,0,0}),

func(p+{0,eps,0}) - func(p-{0,eps,0}),

func(p+{0,0,eps}) - func(p-{0,0,eps}));

Rendering with distance fields :: Ambient Occlusion

• Fake and fast Ambient Occlusion.

• VERY CHEAP, even cheaper than primary rays! Only 5 distance evaluations
instead of casting thousand of rays/evaluations.

Rendering with distance fields :: Ambient Occlusion

• In a regular raytracer, primary rays/AO cost is 1:2000. Here, it’s 3:1 (that’s
almost four orders of magnitude speedup!).

• It’s NOT the screen space trick (SSAO), but 3D.

• The basic technique was invented by Alex Evans, aka Statix (“Fast

Approximation for Global Illumnation on Dynamic Scenes”, 2006). Greets to him!

• The idea: let p be the point to shade. Sample the distance field at a few (5)
points around p and compare the result to the actual distance to p. That
gives surface proximity information that can easily be interpreted as an
(ambient) occlusion factor.

Rendering with distance fields :: Ambient Occlusion

Rendering with distance fields :: Ambient Occlusion

Rendering with distance fields :: Ambient Occlusion

Rendering with distance fields :: Ambient Occlusion

Rendering with distance fields :: Ambient Occlusion

• The exponential decay is there so further away surfaces occlude less than
near by ones.

Rendering with distance fields :: Ambient Occlusion

• Works in realtime too, provided you can compute distances to surfaces.

Rendering with distance fields :: Soft Shadows

• Fake and fast soft shadows.

• Only 6 distance evaluations used instead of casting hundrends of rays.

• Pure geometry-based, not bluring.

• Recipe: take n points on the line from the surface to the light and evaluate
the distance to the closest geometry. Find a magic formula to blend the n
distances to obtain a shadow factor.

Rendering with distance fields

• On a GeForce 8800 GTX, it renders around 20 times faster than on a dual
core CPU. It will very soon be realtime.

Rendering with distance fields

• Related info:

• “Making graphics in 4 kilobytes”: http://www.rgba.org/iq/divulgation/inspire2008/inspire2008.htm

• “Advanced perlin noise”: http://rgba.scenesp.org/iq/computer/articles/morenoise/morenoise.htm

